- 相關推薦
解方程例4教案
在教學工作者實際的教學活動中,時常會需要準備好教案,借助教案可以提高教學質量,收到預期的教學效果。教案應該怎么寫才好呢?下面是小編為大家收集的解方程例4教案,歡迎閱讀與收藏。
學習目標
1、 會設未知數,并利用問題中的相等關系 列方程,且正確求解
2、 會用一元一次方程解決工程問題
重點難點
重點:建立一 元一次方程解決 實際問題
難點:探究實際問題與一元一次方程的關系
教學流程
師生活動 時間
復備標注
一、 復習:
解下列方程:
1.9-3y=5y+5
二、新授
例5 整理 一批圖書,由一個人做要40小時完成。現在計劃由一部 分人先做4小時,再增加2人和他們一起做8小時,完成這項工作。假設這些人的工作效率相同,具體應安排多少人工作?
分析:這里可以把總工作量看做1。思考
人均效率(一個人做1小時完成的工作量)為 。
由x人先做4小時,完成的工 作量為 。再增加2人和前一部分人一起做8小時,完成的工作量為 。
這項工作分兩 段完成,兩段完成的工作量之和為 。
解:設先安排x人工作4小時。
根據兩段工作量之和應是總工作量,得?
去分母, 得 4x+8(x+2)=-1701
去括號,得 4x+8x+16=40
移項及合并同類項,得
12x=24
系數化為1,得 x=-243.
所以 -3x=729
9x=-2187.
答:這三個數是-243,729,-2187。
師生小結:對于規律問題,首先找到各個數之間的關系,發現規律,在根據問題找等量關系,設未知數,列方程,解方程,解答實際 問題。轉化為方程來解決
例4 根據下面的兩種移動電話計費方式表,考慮下列問題。
方式一 方 式二
月租費 30元/月 0
本地通話費 0.30元/月 0.40元/分
(1)一個月內在本地通話20 0分和350分,按方式一需交費多少元?按方式二呢?
(2)對于某個本地通話時 間,會出現按兩種計費方式收費一樣多嗎?
方式一 方式二
200分 90元 80元
350分 135元 140元
( 2)設累計通話t分,則按方式一要收費(30+0.3t)元,按方式二要收費0.4t元。如果兩種計費方式的收費一樣,則
0.4t=30+0.3t
移項,得 0. 4t -0.3t =30
合并同類項,得 0.1t=30
系數化為1,得 t=300
由上可知,如果一個月內通話300分,那么兩種計費方式相同。
思考:你知道怎樣選擇計費方式更省錢嗎?
解后反思:對于有表格實際問題,首先讀清表格提供的信息,再根據問題找等量關系,設未知數,列方程,解方程,以求出問題的解。也就是把實際問題轉化為數學問題。
歸納:用一元一次方程分析和解決實際問題的基本過程如下
三、鞏固練習:94頁9、10
四、達標測試 :《名校》55頁1.2.3.
五、課堂小結:
(1) 這節 課我有哪些收獲?
(2) 我應該注意什么問題?
六、作業: 課本第94頁第9題 學生作業,教師巡視幫助需要幫助的學生。在學生解答后的講評中圍繞兩個問題:
(1)每一步的依據分別是什么?
(2)求方程的解就是把方程化成什么形式?
先讓學生讀題分析規律,然后教師進行引導:
允許學生在討論后再回答。
在學生弄清題意后,教師引導學生說出規律,設一個未知數,表示其余未知數
學生獨立解方程方程的解是不是應用題的解
教師強調解決 問題的分析思路
學生讀題,分析表格中的信息
教 師根據學生的分析再做補充
學生思考問題
教師根據學生的解答,進行規范分析和解答
有些數量關系比較復雜的應用題,用算術方法求解比較困難。此時,如果能恰當地假設一個未知量為x(或其它字母),并能用兩種方式表示同一個量,其中至少有一種方式含有未知數x,那么就得到一個含有未知數x的等式,即方程。利用列方程求解應用題,數量關系清晰、解法簡潔,應當熟練掌握。
例1商店有膠鞋、布鞋共46雙,膠鞋每雙7.5元,布鞋每雙5.9元,全部賣出后,膠鞋比布鞋多收入10元。問:膠鞋有多少雙?
分析:此題幾個數量之間的關系不容易看出來,用方程法卻能清楚地把它們的關系表達出來。
設膠鞋有x雙,則布鞋有(46-x)雙。膠鞋銷售收入為7.5x元,布鞋銷售收入為5.9(46-x)元,根據膠鞋比布鞋多收入10元可列出方程。
解:設有膠鞋x雙,則有布鞋(46-x)雙。
7.5x-5.9(46-x)=10,
7.5x-271.4+5.9x=10,
13.4x=281.4,
x=21。
答:膠鞋有21雙。
分析:因為題目條件中黃球、藍球個數都是與紅球個數進行比較,所以
答:袋中共有74個球。
在例1中,求膠鞋有多少雙,我們設膠鞋有x雙;在例2中,求袋中共有多少個球,我們設紅球有x個,求出紅球個數后,再求共有多少個球。像例1那樣,直接設題目所求的未知數為x,即求什么設什么,這種方法叫直接設元法;像例2那樣,為解題方便,不直接設題目所求的未知數,而間接設題目中另外一個未知數為x,這種方法叫間接設元法。具體采用哪種方法,要看哪種方法簡便。在小學階段,大多數題目可以使用直接設元法。
例3某建筑公司有紅、灰兩種顏色的磚,紅磚量是灰磚量的2倍,計劃修建住宅若干座。若每座住宅使用紅磚80米3,灰磚30米3,那么,紅磚缺40米3,灰磚剩40米3。問:計劃修建住宅多少座?[
分析與解一:用直接設元法。設計劃修建住宅x座,則紅磚有(80x-40)米3,灰磚有(30x+40)米3。根據紅磚量是灰磚量的2倍,列出方程
80x-40=(30x+40)×2,
80x-40=60x+80,
20x=120,
x=6(座)。
分析與解二:用間接設元法。設有灰磚x米3,則紅磚有2x米3。根據修建住宅的座數,列出方程。
(x-40)×80=(2x+40)×30,
80x-3200=60x+1200,
20x=4400,
x=220(米3)。
由灰磚有220米3,推知修建住宅(220-40)÷30=6(座)。
同理,也可設有紅磚x米3。留給同學們做練習。
例4教室里有若干學生,走了10個女生后,男生是女生人數的2倍,又走了9個男生后,女生是男生人數的5倍。問:最初有多少個女生?
分析與解:設最初有x個女生,則男生最初有(x-10)×2個。根據走了10個女生、9個男生后,女生是男生人數的5倍,可列方程
x-10=[(x-10)×2-9]×5,
x-10=(2x-29)×5,
x-10=10x-145,
9x=135,
x=15(個)。
例5一群學生進行籃球投籃測驗,每人投10次,按每人進球數統計的部分情況如下表:
還知道至少投進3個球的人平均投進6個球,投進不到8個球的人平均投進3個球。問:共有多少人參加測驗?
分析與解:設有x人參加測驗。由上表看出,至少投進3個球的有(x-7-5-4)人,投進不到8個球的有(x-3-4-1)人。投中的總球數,既等于進球數不到3個的人的進球數加上至少投進3個球的人的進球數,
0×7+1×5+2×4+6×(x-7-5-4)
= 5+8+6×(x-16)
= 6x-83,
也等于進球數不到8個的人的進球數加上至少投進8個球的人的進球數,[ 3×(x-3-4-1)+8×3+9×4+10×1,
= 3×(x-8)+24+36+10
= 3x+46。
由此可得方程
6x-83=3x+46,
3x=129,
x=43(人)。
例6甲、乙、丙三人同乘汽車到外地旅行,三人所帶行李的重量都超過了可免費攜帶行李的重量,需另付行李費,三人共付4元,而三人行李共重150千克。如果一個人帶150千克的行李,除免費部分外,應另付行李費8元。求每人可免費攜帶的行李重量。
分析與解:設每人可免費攜帶x千克行李。一方面,三人可免費攜帶3x千克行李,三人攜帶150千克行李超重(150-3x)千克,超重行李每千克應付4÷(150-3x)元;另一方面,一人攜帶150千克行李超重(150-x)千克,超重行李每千克應付8÷(150-x)元。根據超重行李每千克應付的錢數,可列方程
4÷(150-3x)=8÷(150-x),
4×(150-x)=8×(150-3x),
600-4x=1200-24x,
20x=600,
x=30(千克)。
練習23
還剩60元。問:甲、乙二人各有存款多少元?
有多少溶液?
3.大、小兩個水池都未注滿水。若從小池抽水將大池注滿,則小池還剩5噸水;若從大池抽水將小池注滿,則大池還剩30噸水。已知大池容積是小池的1.5倍,問:兩池中共有多少噸水?
4.一群小朋友去春游,男孩每人戴一頂黃帽,女孩每人戴一頂紅帽。在每個男孩看來,黃帽子比紅帽子多5頂;在每個女孩看來,黃帽子是紅帽子的2倍。問:男孩、女孩各有多少人?
5.教室里有若干學生,走了10個女生后,男生人數是女生的1.5倍,又走了10個女生后,男生人數是女生的4倍。問:教室里原有多少個學生?
含金多少克?
7.一位牧羊人趕著一群羊去放牧,跑出一只公羊后,他數了數羊的只數,發現剩下的羊中,公羊與母羊的只數比是9∶7;過了一會跑走的公羊又回到了羊群,卻又跑走了一只母羊,牧羊人又數了數羊的只數,發現公羊與母羊的只數比是7∶5。這群羊原來有多少只?
【解方程例4教案】相關文章:
竹影教學教案樣例07-14
小學數學解方程教學教案設計(精選11篇)07-05
課例研究心得11-21
科室評語100例01-02
喜慶的對聯200例12-30
關于龍的對聯100例12-30
語文課例研修心得11-21
課例研修學習總結11-22
課例研究心得10篇11-22