- 高中數(shù)學(xué) 不等式的性質(zhì)一 教案 推薦度:
- 相關(guān)推薦
不等式的性質(zhì)教案
作為一名辛苦耕耘的教育工作者,時(shí)常需要用到教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編為大家整理的不等式的性質(zhì)教案,歡迎大家分享。
不等式的性質(zhì)教案1
教學(xué)目的
掌握不等式的基本性質(zhì),會(huì)用不等式的基本性質(zhì)進(jìn)行不等式的變形。
教學(xué)過程
師:我們已學(xué)過等式,不等式,現(xiàn)在我們來看兩組式子(教師出示小黑板中的兩組式子),請(qǐng)同學(xué)們觀察,哪些是等式?哪些是不等式?
第一組:1+2=3; a+b=b+a; S =ab; 4+x =7。
第二組:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4。
生:第一組都是等式,第二組都是不等式。
師:那么,什么叫做等式?什么叫做不等式?
生:表示相等關(guān)系的式子叫做等式;表示不等式的式子叫做不等式。
師:在數(shù)學(xué)熾,我們用等號(hào)“=”來表示相等關(guān)系,用不等式號(hào)“〈”、“〉”或“≠”表示不等關(guān)系,其中“>”和“<”表示大小關(guān)系。表示大小關(guān)系的不等式是我們中學(xué)教學(xué)所要研究的。
前面我們學(xué)過了等式,同學(xué)們還記得等式的性質(zhì)嗎?
生:等式有這樣的性質(zhì):等式兩邊都加上,或都減去,或都乘以,或都除以( 除數(shù)不為零)同一個(gè)數(shù),所得到的仍是等式。
師:很好!當(dāng)我們開始研究不等式的時(shí)候,自然會(huì)聯(lián)想到,是否有與等式相類似的性質(zhì),也就是說,如果在不等式的兩邊都加上,或都減去,或都乘以,或都除經(jīng)(除數(shù)不為零)同一個(gè)數(shù),結(jié)果將會(huì)如何呢?讓我們先做一些試驗(yàn)練習(xí)。
練習(xí)1 (回答)用小于號(hào)“<”或大于號(hào)“>”填空。
(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6
練習(xí)2(口答)分別從練習(xí)1中四個(gè)不等式出發(fā),進(jìn)行下面的運(yùn)算。
(1)兩邊都加上(或都減去)5,結(jié)果怎樣?不等號(hào)的方向改變了嗎?
(2)兩邊都乘以(或都除以)5,結(jié)果怎樣?不等號(hào)的方向改變了嗎?
(3)兩邊都乘以(或都除以)(-5),結(jié)果怎樣?不等號(hào)的方向改變了嗎?
生:我們發(fā)現(xiàn):在練習(xí)2中,第(1)、(2)題的結(jié)果是不等號(hào)的方向不變;在第(3)題中,結(jié)果是不等號(hào)的方向改變了!
師:同學(xué)們觀察得很認(rèn)真,大家再進(jìn)一步探討一下,在什么情況下不等號(hào)的方向就會(huì)發(fā)生改變呢?
生甲:在原不等式的兩邊都乘以(或除以)一個(gè)負(fù)數(shù)的情況下,不等號(hào)的方向要改變。
師:有沒有不同的意見?大家都同意他的看法嗎?可能還有同學(xué)不放心,讓我們?cè)僮鲆恍┰囼?yàn)。
練習(xí)3(口答)分別在下面四個(gè)不等式的兩邊都以乘以(可除以)-2,看看不等號(hào)的方向是否改變:
7>4;-2<6;-3<-2;-4>-6。
師:現(xiàn)在我們可以歸納出不等式的基本性質(zhì),一般地說,不等式的基本性質(zhì)有三條:
性質(zhì)1:不等式的兩邊都加上(或都減去)同一個(gè)數(shù),不等號(hào)的方向 。
(讓同學(xué)回答。)
性質(zhì)2:不等式的兩邊都乘以(或都除以)同一個(gè)正數(shù),不等號(hào)的`方向 。(讓同學(xué)回答。)
性質(zhì)3:不等式的兩邊都乘以(或都除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向 。(讓同學(xué)回答。)
現(xiàn)在請(qǐng)大家翻開課本,一起朗讀用黑體字寫的三條基本性質(zhì)。
不等式的這三條基本性質(zhì),都可以用數(shù)學(xué)語言表達(dá)出來,先請(qǐng)一位同學(xué)說一說第一條基本性質(zhì)。
生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。
師:對(duì)a和b有什么要求嗎?對(duì)c有什么要求?
生:沒有什么要求。
師:哪位同學(xué)來回答第二、三條性質(zhì)?
生甲:如果a0, 那么acb,且c>0,那么ac>bc(或
生乙:如果abc(或 );如果a>b,且c<0,那么ac 師:這兩條性質(zhì)中,對(duì)a、b、c有什么要求? 生:對(duì)a、b沒什么要求,特別要注意c是正數(shù)還是負(fù)數(shù)。 師:很好,c可以為零嗎? 生:c不能為零。因?yàn)閏為零時(shí),任何不等式兩邊都乘以零就變成等式了。 師:好!應(yīng)用剛才學(xué)到的基本性質(zhì),我們來看下面的例題。 [例1]按照下列條件,寫出仍能成立的不等式: (1)5<9,兩邊都加上-3; (2)9>4,兩邊都減去10; (3)-5<3,兩邊都乘以4; (4)14>-8,兩邊都除以-2。 解 (1)根據(jù)不等式基本性質(zhì)1,在不等式59的兩邊都加上-3,不等號(hào)的方向不變,所以 5+(-3)<9+(-3), 2<6 (2)根據(jù)不等式基本性質(zhì)1,得 9-10>4-10 -1>-6 (3)根據(jù)不等式基本性質(zhì)2,得 -5×4<3×4 -20<12 (4)根據(jù)不等式基本性質(zhì)3,得 14÷(-2)<(-8)÷(-2) -7<4 [例2]設(shè)a>b,用不等號(hào)連結(jié)下列各題中的兩式: (1)a-3與b-3;(2)2a與2b;(3)-a與-b。 師:哪一位同學(xué)來做這題?解題時(shí),要講清一步的理由。 生甲:因?yàn)閍>b,兩邊都減去3,由不等式的基本性質(zhì)1,得 a-3>b-3. 師:很好,大家都是這樣做的嗎? 生乙:我是這樣做的,因?yàn)閍>b,兩邊都加上(-3),由基本性質(zhì)1,得 a-3>b-3. 師:好!這兩位同學(xué)從不同的角度來分析題目,都得到了正確的結(jié)論。 生丙:因?yàn)閍>b,2>0,由基本性質(zhì)2,得2a>2b。 生丁:因?yàn)閍>b,-1>0,由基本性質(zhì)3,得-a>-b。 師:下面我們來看一組較復(fù)雜的問題,請(qǐng)大家都來開動(dòng)腦筋,認(rèn)真審題,仔細(xì)分析。[例3]判斷以下各題的結(jié)論是否正確,并說明都理由: (1)如果a>b,且c>0,那么ac>bd; (2)如果a>b,那么ac2>bc2; (3)如果ac2>bc2,那么a>b; (4)如果a>b,那么a-b>0; (5)如果ax>b,且a≠0,那么x< ; (6)如果a+b>a; 生甲:(1)不對(duì),當(dāng)c=d≤0時(shí),ac>bd不成立。 生乙:(2)也不對(duì),因?yàn)閏2是一個(gè)非負(fù)數(shù),當(dāng)c=0時(shí),ac2>bc2不成立。 生丙:(3)對(duì),因?yàn)閍c2>bc2成立,則c2一定大于零,根據(jù)不等式基本性質(zhì)2,得a>b出。 (4)對(duì),根據(jù)不等式基本性質(zhì),由a>b,兩邊減去b得a-b>0。 (5)不對(duì),當(dāng)a<0時(shí),根據(jù)不等式基本性質(zhì)3,得。 (6)不對(duì),因?yàn)楫?dāng)b<0時(shí),根據(jù)不等式基本性質(zhì)1,得a+b<a;而當(dāng)b=0時(shí),則有a+b=a。 師:同學(xué)們回答得很好。今天我們學(xué)習(xí)了不等式的基本性質(zhì),我們不僅要理解這三條性質(zhì),還要能靈活運(yùn)用。 課外做以下作業(yè):略。 教案說明 (1) 不等式的基本性質(zhì)的教學(xué),是分成兩個(gè)階段進(jìn)行的。在初中階段,對(duì)不等式的基本性質(zhì),并不作證明,只引導(dǎo)學(xué)生用試驗(yàn)的方法,歸納出三條基本性質(zhì)。通過試驗(yàn),由特殊到一般,由具體到抽象,這是一種認(rèn)識(shí)事物規(guī)律的重要方法。科學(xué)上的許多發(fā)現(xiàn),大多離不開試驗(yàn)和觀察。大數(shù)學(xué)家歐拉說過:“數(shù)學(xué)這門科學(xué),需要觀察,也需要試驗(yàn)。”通過教學(xué)培養(yǎng)學(xué)生掌握由試驗(yàn)發(fā)現(xiàn)規(guī)律的方法,具有重要的意義。當(dāng)然通過幾個(gè)特殊的試驗(yàn),就得出一般的結(jié)論,是不嚴(yán)密的。但對(duì)初中學(xué)生來說,初次接觸不等式,是不能要求那么嚴(yán)密的。 (2) 不等式的基本性質(zhì)的教學(xué),還應(yīng)采用對(duì)比的方法。學(xué)生已學(xué)過等式和等式的性質(zhì),為了便于和加深對(duì)不等式基本性質(zhì)的理解,在教學(xué)過程中,應(yīng)將不等式的性質(zhì)與等式的性質(zhì)加以比較:強(qiáng)調(diào)等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個(gè)數(shù),所得到的仍是等式,這個(gè)數(shù)可以是正數(shù)、負(fù)數(shù)或零;而在不等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個(gè)數(shù),當(dāng)這個(gè)數(shù)是正數(shù)、負(fù)數(shù)或零時(shí),對(duì)不等式的方向,有什么不同的影響。通過這樣的對(duì)比,不但可以復(fù)習(xí)已學(xué)過的等式有關(guān)知識(shí),便于引入新課,而且也有利于掌握不等式的基本性質(zhì)。對(duì)比的方法,也是學(xué)習(xí)數(shù)學(xué)的一種重要方法。 (3) 在應(yīng)用不等式的基本性質(zhì)對(duì)不等式進(jìn)行變形時(shí),學(xué)生對(duì)不等式兩邊是具體數(shù),判定大小關(guān)系比較容易。因?yàn)檫@實(shí)際上是有理數(shù)大小的比較。對(duì)于不等式兩邊是含字母的代數(shù)式時(shí),根據(jù)題給的條件,運(yùn)用不等式基本性質(zhì)判別大小關(guān)系或不等號(hào)方向,就比較困難。因?yàn)樗容^抽象,特別是在運(yùn)用不等式的基本性質(zhì)2和性質(zhì)3時(shí),學(xué)生必須考慮不等式兩邊同乘(或同除)的這個(gè)用字母表示的數(shù)的符號(hào)是什么,或者還要對(duì)這個(gè)用字母表示的數(shù),按正數(shù)、負(fù)數(shù)或零三種情況加以討論。在教學(xué)過程中,對(duì)于這類題目,采用討論法是比較好的。因?yàn)樵谟懻摃r(shí),學(xué)生可以充分發(fā)表各種見解。對(duì)于正確的見解,教師可以讓學(xué)生說出解題的依據(jù);對(duì)于錯(cuò)誤的見解,教師可以進(jìn)行啟發(fā)引導(dǎo),發(fā)動(dòng)學(xué)生自己找出錯(cuò)誤的原因,自己修正見解。這樣,有利于發(fā)現(xiàn)問題,有的放矢地解決問題,有利于深化對(duì)不等式基本性質(zhì)的認(rèn)識(shí)。 教學(xué)目標(biāo): 知識(shí)目標(biāo):掌握不等式的基本性質(zhì). 能力目標(biāo):通過不等式基本性質(zhì)的探索,培養(yǎng)學(xué)生觀察、猜想、驗(yàn)證的能力. 情感目標(biāo):經(jīng)歷不等式基本性質(zhì)的探索過程,初步體會(huì)不等式與等式的異同. 教學(xué)重、難點(diǎn): 1、重點(diǎn):掌握不等式的基本性質(zhì). 2、難點(diǎn):不等式的基本性質(zhì)2和3. 教學(xué)準(zhǔn)備: 教師準(zhǔn)備:課件. 教學(xué)設(shè)計(jì)過程: 一、創(chuàng)設(shè)情境,探究新知: 1、合作學(xué)習(xí) (1)已知a<b和b<c,在數(shù)軸上表示如圖5-9. 由數(shù)軸上a和c的位置關(guān)系,你能得出什么結(jié)論?你那舉幾個(gè)具體的例子說明嗎? (2)觀察:用“”或“”填空,并找一找其中的規(guī)律. ①53,5+2____3+2,5-2____3-2; ②–13,-1+2____3+2,-1-3____3-3; ③6>2,6×5____2×5,6×(-5)____2×(-5); ④–23,(-2)×6____3×6,(-2)×(-6)____3×(-6) 會(huì)發(fā)現(xiàn):當(dāng)不等式兩邊加或減去同一個(gè)數(shù)時(shí),不等號(hào)的方向不變 當(dāng)不等式的兩邊同乘同一個(gè)正數(shù)時(shí),不等號(hào)的方向_不變;而乘同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向改變. 2、歸納 不等式的基本性質(zhì)1若a<b和b<c,則a<c. 這個(gè)性質(zhì)也叫做不等式的傳遞性. 不等式的基本性質(zhì)2不等式的兩邊都加上(或減去)同一個(gè)數(shù),所得到的不等式仍成立。 即 如果a>b,那么a+c>b+c,a-c>b-c; 如果a<b,那么a+c<b+c,a-c<b-c. 不等式的.基本性質(zhì)3不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),所得的不等式仍成立;不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),必須把不等號(hào)的方向改變,所得的不等式成立. 即 如果a>b,且c>0,那么ac>bc,>; 如果a>b,且c<0,那么ac<bc,<; 3、做一做P104 4、試一試 (1)若-m5,則m___-5. (2)如果x/y0那么xy___0. (3)如果a-1,那么a-b___-1-b. 5、做一做P105 6、講解例題 已知a<0,試比較2a與a的大小. 分析比較2a與a的大小,可以利用不等式的基本性質(zhì),也可以利用數(shù)軸,直接得出2a與a的大小. 二、鞏固反思: 1、P106T1、T2“ 2、探究活動(dòng) 比較等式與不等式的基本性質(zhì). 例如,等式是否有與不等式的基本性質(zhì)1類似的傳遞性?不等式是否有與等式的基本性質(zhì)類似的移項(xiàng)法則?你可以用列表的方式進(jìn)行對(duì)比.(請(qǐng)與你的伙伴交流) 三、小結(jié): 通過這節(jié)課的學(xué)習(xí),你有哪些收獲? 四、作業(yè): 1、作業(yè)題P107 2、預(yù)習(xí)5.3不等式與不等式組 探究活動(dòng) 能得到什么結(jié)論 題目已知且,你能夠推出什么結(jié)論? 分析與解: 由條件推出結(jié)論,我們可以考慮把已知條件的變量范圍擴(kuò)大,對(duì)已知變量作運(yùn)算,運(yùn)用不等式的性質(zhì),或者跳出不等式去考慮一般的數(shù)學(xué)表達(dá)式。 思路一:改變的范圍,可得: 1.且; 2.且; 思路二:由已知變量作運(yùn)算,可得: 3.且; 4.且; 5.且; 6.且; 7.且; 思路三:考慮含有的數(shù)學(xué)表達(dá)式具有的'性質(zhì),可得: 8.(其中為實(shí)常數(shù))是三次方程; 9.(其中為常數(shù))的圖象不可能表示直線。 說明從已知信息能夠推出什么結(jié)論?這是我們經(jīng)常需要思考的問題,這里給出的都是必要非充分條件,讀者可以考慮是否能夠?qū)懗龀湟獥l件;另外,運(yùn)用推出關(guān)系的傳遞性,在推出結(jié)論的基礎(chǔ)上進(jìn)一步進(jìn)行推理,還可得出很多結(jié)果,請(qǐng)讀者考慮. 探究關(guān)系式是否成立的問題 題目當(dāng)成立時(shí),關(guān)系式是否成立?若成立,加以證明;若不成立,說明理由。 解:因?yàn)椋裕裕裕曰?/p> 所以或 所以或 所以不可能成立。 說明:像本例這樣的探索題,題目的結(jié)論是“兩可”(即兩種可能性)情形,而我們知道,說明結(jié)論不成立可像例1那樣舉一個(gè)反例就可以了。不過像本例的執(zhí)果索因的分析,不僅說明結(jié)論不成立,而且得出,必須同時(shí)大于1或同時(shí)小于1的結(jié)論。 探討增加什么條件使命題成立 例適當(dāng)增加條件,使下列命題各命題成立: (1)若,則; (2)若,則; (3)若,則; (4)若,則 思路分析: 本例為條件型開放題,需要依據(jù)不等式的性質(zhì),尋找使結(jié)論成立時(shí)所缺少的一個(gè)條件。 第四課時(shí) 教學(xué)目標(biāo) 1.掌握分析法證明不等式; 2.理解分析法實(shí)質(zhì)——執(zhí)果索因; 3.提高證明不等式證法靈活性. 教學(xué)重點(diǎn)分析法 教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解 教學(xué)方法啟發(fā)引導(dǎo)式 教學(xué)活動(dòng) (一)導(dǎo)入新課 (教師活動(dòng))教師提出問題,待學(xué)生回答和思考后點(diǎn)評(píng). (學(xué)生活動(dòng))回答和思考教師提出的問題. [問題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法? [問題2]能否用比較法或綜合法證明不等式: [點(diǎn)評(píng)]在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法.(板書課題) 設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,激發(fā)學(xué)生學(xué)習(xí)新的證明不等式知識(shí)的積極性,導(dǎo)入本節(jié)課學(xué)習(xí)內(nèi)容:用分析法證明不等式. (二)新課講授 【嘗試探索、建立新知】 (教師活動(dòng))教師講解綜合法證明不等式的邏輯關(guān)系,然后提出問題供學(xué)生研究,并點(diǎn)評(píng).幫助學(xué)生建立分析法證明不等式的知識(shí)體系.投影分析法證明不等式的概念. (學(xué)生活動(dòng))與教師一道分析綜合法的邏輯關(guān)系,在教師啟發(fā)、引導(dǎo)下嘗試探索,構(gòu)建新知. [講解]綜合法證明不等式的邏輯關(guān)系:以已知條件中的不等式或基本不等式作為結(jié)論,逐步尋找它成立的必要條件,直到必要條件就是要證明的不等式. [問題1]我們能不能用同樣的思考問題的方式,把要證明的不等式作為結(jié)論,逐步去尋找它成立的充分條件呢? [問題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時(shí),說明了什么呢? [問題3]說明要證明的不等式成立的理由是什么呢? [點(diǎn)評(píng)]從要證明的結(jié)論入手,逆求使它成立的充分條件,直到充分條件顯然成立為止,從而得出要證明的結(jié)論成立.就是分析法的邏輯關(guān)系. [投影]分析法證明不等式的概念.(見課本) 設(shè)計(jì)意圖:對(duì)比綜合法的邏輯關(guān)系,教師層層設(shè)置問題,激發(fā)學(xué)生積極思考、研究.建立新的知識(shí);分析法證明不等式.培養(yǎng)學(xué)習(xí)創(chuàng)新意識(shí). 【例題示范、學(xué)會(huì)應(yīng)用】 (教師活動(dòng))教師板書或投影例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)用分析法證明不等式,并點(diǎn)評(píng)用分析法證明不等式必須注意的問題. (學(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問題,與教師一道完成問題的論證. 例1求證 [分析]此題用比較法和綜合法都很難入手,應(yīng)考慮用分析法. 證明:(見課本) [點(diǎn)評(píng)]證明某些含有根式的不等式時(shí),用綜合法比較困難.此例中,我們很難想到從“”入手,因此,在不等式的證明中,分析法占有重要的位置,我們常用分析法探索證明途徑,然后用綜合法的形式寫出證明過程,這是解決數(shù)學(xué)問題的一種重要思維方法,事實(shí)上,有些綜合法的表述正是建立在分析法思索的基礎(chǔ)上,分析法的優(yōu)越性正體現(xiàn)在此. 例2已知:,求證:(用分析法)請(qǐng)思考下列證法有沒有錯(cuò)誤?若有錯(cuò)誤,錯(cuò)在何處? [投影]證法一:因?yàn)椋浴⑷シ帜福癁椋褪牵梢阎闪ⅲ郧笞C的不等式成立. 證法二:欲證,因?yàn)?/p> 只需證,即證,即證 因?yàn)槌闪ⅲ猿闪ⅲ?/p> (證法二正確,證法一錯(cuò)誤.錯(cuò)誤的原因是:雖然是從結(jié)論出發(fā),但不是逐步逆戰(zhàn)結(jié)論成立的充分條件,事實(shí)上找到明顯成立的不等式是結(jié)論的必要條件,所以不符合分析法的邏輯原理,犯了邏輯上的錯(cuò)誤.) [點(diǎn)評(píng)]①用分析法證明不等式的邏輯關(guān)系是: (結(jié)論)(步步尋找不等式成立的充分條件)(結(jié)論) 分析法是“執(zhí)果索因”,它與綜合法的證明過程(由因?qū)Ч┣∏∠喾矗谟梅治龇ㄗC明時(shí)要注意書寫格式.分析法論證“若A則B”這個(gè)命題的書寫格式是: 要證命題B為真,只需證明為真,從而有…… 這只需證明為真,從而又有…… …… 這只需證明A為真. 而已知A為真,故命題B必為真. 要理解上述格式中蘊(yùn)含的邏輯關(guān)系. [投影]例3證明:通過水管放水,當(dāng)流速相同時(shí),如果水管截面(指橫截面,下同)的周長(zhǎng)相等,那么截面是圓的水管比截面是正方形的水管流量大. [分析]設(shè)未知數(shù),列方程,因?yàn)楫?dāng)水的流速相同時(shí),水管的流量取決于水管截面面積的大小,設(shè)截面的周長(zhǎng)為,則周長(zhǎng)為的圓的半徑為,截面積為;周長(zhǎng)為的正方形邊長(zhǎng)為,截面積為,所以本題只需證明: 證明:(見課本) 設(shè)計(jì)意圖:理解分析法與綜合法的內(nèi)在聯(lián)系,說明分析法在證明不等式中的重要地位.掌 握分析法證明不等式,特別重視分析法證題格式及格式中蘊(yùn)含的邏輯關(guān)系.靈活掌握分析法的應(yīng)用,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的'能力. 【課堂練習(xí)】 (教師活動(dòng))打出字幕(練習(xí)),請(qǐng)甲、乙兩位同學(xué)板演,巡視學(xué)生的解題情況,對(duì)正確的證法給予肯定,對(duì)偏差及時(shí)糾正.點(diǎn)評(píng)練習(xí)中存在的問題. (學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演. 【字幕】練習(xí) 1.求證 2.求證: 設(shè)計(jì)意圖:掌握用分析法證明不等式,反饋課堂效果,調(diào)節(jié)課堂教學(xué). 【分析歸納、小結(jié)解法】 (教師活動(dòng))分析歸納例題和練習(xí)的解題過程,小給用分析法證明不等式的解題方法. (學(xué)生活動(dòng))與教師一道分析歸納,小結(jié)解題方法,并記錄筆記. 1.分析法是證明不等式的一種常用基本方法.當(dāng)證題不知從何入手時(shí),有時(shí)可以運(yùn)用分析法而獲得解決,特別是對(duì)于條件簡(jiǎn)單而結(jié)論復(fù)雜的題目往往更是行之有效的. 2.用分析法證明不等式時(shí),要正確運(yùn)用不等式的性質(zhì)逆找充分條件,注意分析法的證題格式. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握分析法證明不等式的方法. (三)小結(jié) (教師活動(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí). (學(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記. 本節(jié)課主要學(xué)習(xí)了用分析法證明不等式.應(yīng)用分析法證明不等式時(shí),掌握一些常用技巧: 通分、約分、多項(xiàng)式乘法、因式分解、去分母,兩邊乘方、開方等.在使用這些技巧變形時(shí),要注意遵循不等式的性質(zhì).另外還要適當(dāng)掌握指數(shù)、對(duì)數(shù)的性質(zhì)、三角公式在逆推中的靈活運(yùn)用.理解分析法和綜合法是對(duì)立統(tǒng)一的兩個(gè)方面.有時(shí)可以用分析法思索,而用綜合法書寫證明,或者分析法、綜合法相結(jié)合,共同完成證明過程. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí). (四)布置作業(yè) 1.課本作業(yè):P174、5. 2.思考題:若,求證 3.研究性題:已知函數(shù),若、,且證明 設(shè)計(jì)意圖:思考題供學(xué)有余力同學(xué)練習(xí),研究性題供學(xué)生研究分析法證明有關(guān)問題. (五)課后點(diǎn)評(píng) 教學(xué)過程是不斷發(fā)現(xiàn)問題、解決問題的思維過程.本節(jié)課在形成分析法證明不等式認(rèn)知結(jié)構(gòu)中,教師提出問題或引導(dǎo)學(xué)生發(fā)現(xiàn)問題,然后開拓學(xué)生思路,啟迪學(xué)生智慧,求得問題解決.一個(gè)問題解決后,及時(shí)地提出新問題,提高學(xué)生的思維層次,逐步由特殊到一般,由具體到抽象,由表面到本質(zhì),把學(xué)生的思維步步引向深入,直到完成本節(jié)課的教學(xué)任務(wù).總之,本節(jié)課的教學(xué)安排是讓學(xué)生的思維由問題開始,到問題深化,始終處于積極主動(dòng)狀態(tài). 本節(jié)課練中有講,講中有練,講練結(jié)合.在講與練的互相作用下,使學(xué)生的思維逐步深化.教師提出的問題和例題,先由學(xué)生自己研究,然后教師分析與概括.在教師講解中,又不斷讓學(xué)生練習(xí),力求在練習(xí)中加深理解,盡量改變課堂上教師包括辦代替的做法. 在安排本節(jié)課教學(xué)內(nèi)容時(shí),按認(rèn)識(shí)規(guī)律,由淺入深,由易及難,逐漸展開教學(xué)內(nèi)容,讓學(xué)生形成有序的知識(shí)結(jié)構(gòu). 作業(yè)答案: 思考題: .因?yàn)椋剩猿闪ⅲ?/p> 研究性題:令,則: ,故原不等式等價(jià)于 由已知有.。所以上式等價(jià)于,即。所以又等價(jià)于.因?yàn)椋鲜匠闪ⅲ栽坏仁匠闪ⅰ?/p> 不等式的實(shí)際解釋 題目:不等式:是正數(shù),且,則。可以給出一個(gè)具有實(shí)際背景的解釋:在溶液里加溶質(zhì)則濃度增加,即個(gè)單位溶液中含有個(gè)單位的溶質(zhì),其濃度小于加入個(gè)單位溶質(zhì)后的溶液濃度,請(qǐng)你仿照此例,給出兩個(gè)不等式的解釋。 分析與解 1.先看問題中的不等式,建筑學(xué)規(guī)定,民用住宅的窗戶面積必須小于地板面積,但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,并且這個(gè)比值越大,住宅的采光條件越好。我們知道如果同時(shí)增加相等的窗戶面積和地板面積,那么住宅的條件變好。 設(shè)地板面積為平方米,窗戶面積為平方米,若窗戶面積和地板面積同時(shí)增加相等的平方米,住宅的采光條件變好了,即有 2.是正數(shù),不等式可以推出,我們可以用混合溶液來解釋:兩個(gè)不同濃度的溶液混合后,其濃度介于混合前兩溶液濃度之間。 3.電阻串并聯(lián)。電阻值為、的電阻,串聯(lián)電阻為,并聯(lián)電阻為,串聯(lián)電阻變大,并聯(lián)電阻變小,因此有不等式,即 說明許多數(shù)學(xué)結(jié)論是由實(shí)際問題抽象為數(shù)學(xué)問題后,通過數(shù)學(xué)的運(yùn)算演變得到的。反過來,把抽象的數(shù)學(xué)結(jié)論還原為實(shí)際解釋也是一種數(shù)學(xué)運(yùn)用,值得大家關(guān)注。 教學(xué)目標(biāo) 1、經(jīng)歷通過類比、猜測(cè)、驗(yàn)證發(fā)現(xiàn)不等式性質(zhì)的探索過程,掌握不等式的性質(zhì); 2、初步體會(huì)不等式與等式的異同; 3、通過創(chuàng)設(shè)問題情境和實(shí)驗(yàn)探究活動(dòng),積極引導(dǎo)學(xué)生參與數(shù)學(xué)活動(dòng),提高學(xué)習(xí)數(shù)學(xué)的興趣,增進(jìn)學(xué)習(xí)數(shù)學(xué)的信心,體會(huì)在解決問題的過程中與他人交流合作的重要性. 教學(xué)難點(diǎn) :正確運(yùn)用不等式的性質(zhì)。 知識(shí)重點(diǎn): 理解并掌握不等式的性質(zhì)。 教學(xué)過程: (師生活動(dòng)) 設(shè)計(jì)理念提出問題 教師出示天平,并請(qǐng)學(xué)生仔細(xì)觀察老師的操作過程,回答下列問題: 1、天平被調(diào)整到什么狀態(tài)? 2、給不平衡的天平兩邊同時(shí)加人相同質(zhì)量的砝碼,天平會(huì)有什么變化? 3、不平衡的天平兩邊同時(shí)拿掉相同質(zhì)量的砝碼,天平會(huì)有什么變化? 4、如果對(duì)不平衡的天平兩邊砝碼的質(zhì)量同時(shí)擴(kuò)大相同的倍數(shù),天平會(huì)平衡嗎?縮小相同的倍數(shù)呢? 通過天平演示,結(jié)合自己的觀察和思考,讓學(xué)生感受生活中的不等關(guān)系。 探究新知 1、用或填空. (1)-1 3 -1+2 3+2 -1-3 3-3 (2) 5 3 5+a 3+a 5-a 3-a (3) 6 2 65 25 6(-5)2(-5) (4) -2 3(-2)6 36 (-2)(-6) 3(一6) (5)-4 -6 (-4)2(-6)2 (-4)十(-2) (-6)十(-2) 2、從以上練習(xí)中,你發(fā)現(xiàn)了什么?請(qǐng)你再用幾個(gè)例子試一試,還有類似的結(jié)論嗎?請(qǐng)把你的發(fā)現(xiàn)告訴同學(xué)們并與他們交流. 3、讓學(xué)生充分發(fā)表發(fā)現(xiàn),師生共同歸納得出: 不等式性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變. 不等式性質(zhì)2:不等式兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變. 不等式性質(zhì)3:不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變. 4、你能說出不等式性質(zhì)與等式性質(zhì)的相同之處與不同 之處嗎? 通過動(dòng)手、動(dòng)口、動(dòng)腦,引導(dǎo)學(xué)生運(yùn)用類比、歸納的.數(shù)學(xué)思想去探究問題,在品嘗成功的喜悅中激發(fā)出學(xué)數(shù)學(xué)的興趣。 滲透類比思想。 探究新知 4、 下列哪些是不5、 等式x+3 6的解?哪些不6、 是? -4,-2. 5,0,1,2.5,3,3.2,4.8,8,12 2、直接想出不等式的解集,并在數(shù)軸上表示出來: (1)x+3 6(2)2x 8(3)x-2 0 鞏固新知 1、 判斷 (1)∵a b a-b b-b (2)∵a b (3)∵a b -2a -2b (4)∵-2a 0 a 0 (5)∵-a 0 a 3 2、 填空 (1)∵ 2a 3a a是 數(shù) (2)∵ a是 數(shù) (3)∵ax a且 x 1 a是 數(shù) 3、 根據(jù)下列已知條件,4、 說出a與b的不5、 等關(guān)系,6、 并說明是根據(jù)不7、 等式哪一條性質(zhì)。 (1)a-3 b-3 (2) (3)-4a -4b 設(shè)置這幾個(gè)練習(xí),既可以培養(yǎng)學(xué)生獨(dú)立思考的能力,又可強(qiáng)化對(duì)概念的理解,使學(xué)生真正認(rèn)識(shí)不等式的性質(zhì)。 總結(jié)歸納 在學(xué)生自己總結(jié)的基礎(chǔ)上,教師應(yīng)強(qiáng)調(diào)兩點(diǎn): 1、等式性質(zhì)與不等式性質(zhì)的不同之處; 2、在運(yùn)用不等式性質(zhì)3時(shí)應(yīng)注意的問題. 學(xué)生通過總結(jié),可以幫助自 己從整體上把握本節(jié)課所學(xué)知 識(shí),培養(yǎng)良好的學(xué)習(xí)習(xí)慣,也為 下節(jié)課學(xué)好解不等式打下基礎(chǔ)。 小結(jié)與作業(yè) 布置作業(yè) 1、必做題:教科書第134頁習(xí)題9.1第4、5題 2、選做題:教科書第134頁習(xí)題9. 1第7題. 3、備選題: 本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想) 本節(jié)課設(shè)計(jì)旨在讓學(xué)生經(jīng)歷通過實(shí)驗(yàn)、猜測(cè)、驗(yàn)證,發(fā)現(xiàn)不等式性質(zhì)的探索過程.用類比和實(shí)驗(yàn)探究法作為主要方法貫穿整個(gè)課堂教學(xué)之中,并以多媒體作為輔助教學(xué)手段.讓學(xué)生充分進(jìn)行討論交流,在自主探索和合作學(xué)習(xí)中掌握不等式的性質(zhì).這樣就能有效地突破本節(jié)課的難點(diǎn),為學(xué)生今后的學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ). 教學(xué)過程中貫穿了一條創(chuàng)設(shè)情境,引出新知實(shí)驗(yàn)討論,得出性質(zhì)探究辨析,突破難點(diǎn)運(yùn)用性質(zhì),解決問題的線索,使學(xué)生真正成為學(xué)習(xí)的主人.在師生交流合作中營(yíng)造互動(dòng)的氛圍,讓學(xué)生積極主動(dòng)地參與教學(xué)的整個(gè)過程,使他們的學(xué)習(xí)態(tài)度、情感意志和個(gè)性品質(zhì)等都得到不同程度的提高. 為了突破教學(xué)難點(diǎn),讓學(xué)生能熟練準(zhǔn)確地運(yùn)用不等式性質(zhì)3,本課設(shè)計(jì)了多樣化的練習(xí)以鞏固所學(xué)知識(shí).在學(xué)生回答、板演、討論的過程中,課堂氣氛被激活,教學(xué)難點(diǎn)被突破,使學(xué)生在輕松愉快的氛圍中扎實(shí)地掌握性質(zhì)并靈活運(yùn)用.同時(shí),學(xué)習(xí)伙伴之間進(jìn)行了思維的碰撞和溝通. 一、教學(xué)目標(biāo): (一)知識(shí)與技能 1.掌握不等式的三條基本性質(zhì)。 2.運(yùn)用不等式的基本性質(zhì)對(duì)不等式進(jìn)行變形。 (二)過程與方法 1.通過等式的性質(zhì),探索不等式的性質(zhì),初步體會(huì)“類比”的數(shù)學(xué)思想。 2.通過觀察、猜想、驗(yàn)證、歸納等數(shù)學(xué)活動(dòng),經(jīng)歷從特殊到一般、由具體到抽象的認(rèn)知過程,感受數(shù)學(xué)思考過程的條理性,發(fā)展思維能力和語言表達(dá)能力。 (三)情感態(tài)度與價(jià)值觀 通過探究不等式基本性質(zhì)的活動(dòng),培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜想,樂于探究的良好思維品質(zhì)。 二、教學(xué)重難點(diǎn) 教學(xué)重點(diǎn): 探索不等式的三條基本性質(zhì)并能正確運(yùn)用它們將不等式變形。 教學(xué)難點(diǎn): 不等式基本性質(zhì)3的探索與運(yùn)用。 三、教學(xué)方法:自主探究——合作交流 四、教學(xué)過程: 情景引入:1.舉例說明什么是不等式? 2.判斷下列各式是否成立?并說明理由。 ( 1 ) 若x-6=10, 則x=16( ) ( 2 ) 若3x=15, 則 x=5 ( ) ( 3 ) 若x-6>10 則 x>16( ) ( 4 ) 若3x>15 則 x>5 ( ) 【設(shè)計(jì)意圖】(1)、(2)小題喚起對(duì)舊知識(shí)等式的基本性質(zhì)的回憶,(3)、(4)小題引導(dǎo)學(xué)生大膽說出自己的想法。 溫故知新 問題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎? 等式性質(zhì)1:等式兩邊都加上或減去同一個(gè)數(shù)(或同一個(gè)整式),所得結(jié)果仍是不等式。 估計(jì)學(xué)生會(huì)猜:不等式兩邊都加上或減去同一個(gè)數(shù)(或同一個(gè)整式),所得結(jié)果仍是不等式。教師引導(dǎo):“=”沒有方向性,所以可以說所得結(jié)果仍是等式,而不等號(hào):“>,<,≥,≤”具有方向性,我們應(yīng)該重點(diǎn)研究它在方向上的變化。 問題2.你能通過實(shí)驗(yàn)、猜想,得出進(jìn)一步的結(jié)論嗎? 同學(xué)通過實(shí)例驗(yàn)證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。 問題3.你能由等式性質(zhì)2進(jìn)一步猜想不等式還具有什么性質(zhì)嗎? 等式性質(zhì)2:等式兩邊都乘或除以同一個(gè)數(shù)(除數(shù)不能是0),等式依然成立。 估計(jì)學(xué)生會(huì)猜:不等式兩邊都乘或除以同一個(gè)數(shù)(除數(shù)不能是0),不等號(hào)的方向不變。 你能和小伙伴一起來驗(yàn)證你們的猜想嗎? 學(xué)生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個(gè)數(shù)時(shí),不等號(hào)的方向會(huì)出現(xiàn)兩種情況。教師進(jìn)一步引導(dǎo)學(xué)生通過分析、比較探索規(guī)律,從而形成共識(shí),歸納概括出不等式性質(zhì)2和3。 問題4.在不等式兩邊都乘0會(huì)出現(xiàn)什么情況? 問題5.如果a、b、c表示任意數(shù),且a<b,你能用a、b、c把不等式的基本性質(zhì)表示出來碼? 【想一想】不等式的`基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處? 學(xué)生思考,獨(dú)立總結(jié)異同點(diǎn)。 【設(shè)計(jì)意圖】引導(dǎo)學(xué)生把二者進(jìn)行比較,有助于加深對(duì)不等式基本性質(zhì)的理解,促成知識(shí)的“正遷移”。 綜合訓(xùn)練:你能運(yùn)用不等式的基本性質(zhì)解決問題嗎? 1、課本62頁例3 教師引導(dǎo)學(xué)生觀察每個(gè)問題是由a>b經(jīng)過怎樣的變形得到的,應(yīng)該應(yīng)用不等式的哪條基本性質(zhì)。由學(xué)生思考后口答。 2、你認(rèn)為在運(yùn)用不等式的基本性質(zhì)時(shí)哪一條性質(zhì)最容易出錯(cuò),應(yīng)該怎樣記住? 3.火眼金睛 ①a>1, 則2a___a ②a>3a,則 a ___ 0 【設(shè)計(jì)意圖】通過變式訓(xùn)練,加深學(xué)生對(duì)新知的理解,培養(yǎng)學(xué)生分析、探究問題的能力。 課堂小結(jié): 這節(jié)課你有哪些收獲?你認(rèn)為自己的表現(xiàn)如何?教師引導(dǎo)學(xué)生回顧、思考、交流。 【設(shè)計(jì)意圖】回顧、總結(jié)、提高。學(xué)生自覺形成本節(jié)的課的知識(shí)網(wǎng)絡(luò)。 思考題 咱們班的盛芳同學(xué)準(zhǔn)備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標(biāo)準(zhǔn)為:大人全價(jià),小孩半價(jià);方正旅行社的標(biāo)準(zhǔn)為:大人、小孩一律八折。若兩家旅行社的基本價(jià)一樣,你能幫盛芳同學(xué)考慮一下選擇哪家旅行社更合算嗎? 【設(shè)計(jì)意圖】利用所學(xué)的數(shù)學(xué)知識(shí),解決生活中的問題,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,體驗(yàn)數(shù)學(xué)是描述現(xiàn)實(shí)世界的重要手段。 第四課時(shí) 教學(xué)目標(biāo) 1.掌握分析法證明不等式; 2.理解分析法實(shí)質(zhì)——執(zhí)果索因; 3.提高證明不等式證法靈活性. 教學(xué)重點(diǎn)分析法 教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解 教學(xué)方法啟發(fā)引導(dǎo)式 教學(xué)活動(dòng) (一)導(dǎo)入新課 (教師活動(dòng))教師提出問題,待學(xué)生回答和思考后點(diǎn)評(píng). (學(xué)生活動(dòng))回答和思考教師提出的問題. [問題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法? [問題2]能否用比較法或綜合法證明不等式: [點(diǎn)評(píng)]在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法.(板書課題) 設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處, 激發(fā)學(xué)生學(xué)習(xí)新的證明不等式知識(shí)的積極性,導(dǎo)入本節(jié)課學(xué)習(xí)內(nèi)容:用分析法證明不等式. (二)新課講授 【嘗試探索、建立新知】 (教師活動(dòng))教師講解綜合法證明不等式的邏輯關(guān)系,然后提出問題供學(xué)生研究,并點(diǎn)評(píng).幫助學(xué)生建立分析法證明不等式的知識(shí)體系.投影分析法證明不等式的概念. (學(xué)生活動(dòng))與教師一道分析綜合法的邏輯關(guān)系,在教師啟發(fā)、引導(dǎo)下嘗試探索,構(gòu)建新知. [講解]綜合法證明不等式的邏輯關(guān)系:以已知條件中的不等式或基本不等式作為結(jié)論,逐步尋找它成立的必要條件,直到必要條件就是要證明的不等式. [問題1]我們能不能用同樣的思考問題的方式,把要證明的不等式作為結(jié)論,逐步去尋找它成立的充分條件呢? [問題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時(shí),說明了什么呢? [問題3]說明要證明的不等式成立的理由是什么呢? [點(diǎn)評(píng)]從要證明的結(jié)論入手,逆求使它成立的充分條件,直到充分條件顯然成立為止,從而得出要證明的結(jié)論成立.就是分析法的邏輯關(guān)系. [投影]分析法證明不等式的概念.(見課本) 設(shè)計(jì)意圖:對(duì)比綜合法的邏輯關(guān)系,教師層層設(shè)置問題,激發(fā)學(xué)生積極思考、研究.建立新的知識(shí);分析法證明不等式.培養(yǎng)學(xué)習(xí)創(chuàng)新意識(shí). 【例題示范、學(xué)會(huì)應(yīng)用】 (教師活動(dòng))教師板書或投影例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)用分析法證明不等式,并點(diǎn)評(píng)用分析法證明不等式必須注意的問題. (學(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問題,與教師一道完成問題的論證. 例1求證 [分析]此題用比較法和綜合法都很難入手,應(yīng)考慮用分析法. 證明:(見課本) [點(diǎn)評(píng)]證明某些含有根式的不等式時(shí),用綜合法比較困難.此例中,我們很難想到從“”入手,因此,在不等式的證明中,分析法占有重要的位置,我們常用分析法探索證明途徑,然后用綜合法的形式寫出證明過程,這是解決數(shù)學(xué)問題的一種重要思維方法,事實(shí)上,有些綜合法的表述正是建立在分析法思索的基礎(chǔ)上,分析法的優(yōu)越性正體現(xiàn)在此. 例2已知:,求證:(用分析法)請(qǐng)思考下列證法有沒有錯(cuò)誤?若有錯(cuò)誤,錯(cuò)在何處? [投影]證法一:因?yàn)椋浴⑷シ帜福癁椋褪牵梢阎闪ⅲ郧笞C的不等式成立. 證法二:欲證,因?yàn)?/p> 只需證,即證,即證 因?yàn)槌闪ⅲ猿闪ⅲ?/p> (證法二正確,證法一錯(cuò)誤.錯(cuò)誤的原因是:雖然是從結(jié)論出發(fā),但不是逐步逆戰(zhàn)結(jié)論成立的充分條件,事實(shí)上找到明顯成立的不等式是結(jié)論的必要條件,所以不符合分析法的邏輯原理,犯了邏輯上的錯(cuò)誤.) [點(diǎn)評(píng)]①用分析法證明不等式的邏輯關(guān)系是: (結(jié)論)(步步尋找不等式成立的充分條件)(結(jié)論) 分析法是“執(zhí)果索因”,它與綜合法的證明過程(由因?qū)Ч┣∏∠喾矗谟梅治龇ㄗC明時(shí)要注意書寫格式.分析法論證“若A則B”這個(gè)命題的書寫格式是: 要證命題B為真,只需證明為真,從而有…… 這只需證明為真,從而又有…… …… 這只需證明A為真. 而已知A為真,故命題B必為真. 要理解上述格式中蘊(yùn)含的邏輯關(guān)系. [投影]例3證明:通過水管放水,當(dāng)流速相同時(shí),如果水管截面(指橫截面,下同)的周長(zhǎng)相等,那么截面是圓的水管比截面是正方形的水管流量大. [分析]設(shè)未知數(shù),列方程,因?yàn)楫?dāng)水的流速相同時(shí),水管的流量取決于水管截面面積的大小,設(shè)截面的周長(zhǎng)為,則周長(zhǎng)為的圓的半徑為,截面積為;周長(zhǎng)為的正方形邊長(zhǎng)為,截面積為,所以本題只需證明: 證明:(見課本) 設(shè)計(jì)意圖:理解分析法與綜合法的內(nèi)在聯(lián)系,說明分析法在證明不等式中的重要地位.掌 握分析法證明不等式,特別重視分析法證題格式及格式中蘊(yùn)含的邏輯關(guān)系.靈活掌握分析法的應(yīng)用,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力. 【課堂練習(xí)】 (教師活動(dòng))打出字幕(練習(xí)),請(qǐng)甲、乙兩位同學(xué)板演,巡視學(xué)生的解題情況,對(duì)正確的證法給予肯定,對(duì)偏差及時(shí)糾正.點(diǎn)評(píng)練習(xí)中存在的問題. (學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演. 【字幕】 練習(xí)1.求證 2.求證: 設(shè)計(jì)意圖:掌握用分析法證明不等式,反饋課堂效果,調(diào)節(jié)課堂教學(xué). 【分析歸納、小結(jié)解法】 (教師活動(dòng))分析歸納例題和練習(xí)的解題過程,小給用分析法證明不等式的解題方法. (學(xué)生活動(dòng))與教師一道分析歸納,小結(jié)解題方法,并記錄筆記. 1.分析法是證明不等式的一種常用基本方法.當(dāng)證題不知從何入手時(shí),有時(shí)可以運(yùn)用分析法而獲得解決,特別是對(duì)于條件簡(jiǎn)單而結(jié)論復(fù)雜的題目往往更是行之有效的. 2.用分析法證明不等式時(shí),要正確運(yùn)用不等式的.性質(zhì)逆找充分條件,注意分析法的證題格式. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握分析法證明不等式的方法. (三)小結(jié) (教師活動(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí). (學(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記. 本節(jié)課主要學(xué)習(xí)了用分析法證明不等式.應(yīng)用分析法證明不等式時(shí),掌握一些常用技巧: 通分、約分、多項(xiàng)式乘法、因式分解、去分母,兩邊乘方、開方等.在使用這些技巧變形時(shí),要注意遵循不等式的性質(zhì).另外還要適當(dāng)掌握指數(shù)、對(duì)數(shù)的性質(zhì)、三角公式在逆推中的靈活運(yùn)用.理解分析法和綜合法是對(duì)立統(tǒng)一的兩個(gè)方面.有時(shí)可以用分析法思索,而用綜合法書寫證明,或者分析法、綜合法相結(jié)合,共同完成證明過程. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí). (四)布置作業(yè) 1.課本作業(yè):P174、5. 2.思考題:若,求證 3.研究性題:已知函數(shù),若、,且證明 設(shè)計(jì)意圖:思考題供學(xué)有余力同學(xué)練習(xí),研究性題供學(xué)生研究分析法證明有關(guān)問題. (五)課后點(diǎn)評(píng) 教學(xué)過程是不斷發(fā)現(xiàn)問題、解決問題的思維過程.本節(jié)課在形成分析法證明不等式認(rèn)知結(jié)構(gòu)中,教師提出問題或引導(dǎo)學(xué)生發(fā)現(xiàn)問題,然后開拓學(xué)生思路,啟迪學(xué)生智慧,求得問題解決.一個(gè)問題解決后,及時(shí)地提出新問題,提高學(xué)生的思維層次,逐步由特殊到一般,由具體到抽象,由表面到本質(zhì),把學(xué)生的思維步步引向深入,直到完成本節(jié)課的教學(xué)任務(wù).總之,本節(jié)課的教學(xué)安排是讓學(xué)生的思維由問題開始,到問題深化,始終處于積極主動(dòng)狀態(tài). 本節(jié)課練中有講,講中有練,講練結(jié)合.在講與練的互相作用下,使學(xué)生的思維逐步深化.教師提出的問題和例題,先由學(xué)生自己研究,然后教師分析與概括.在教師講解中,又不斷讓學(xué)生練習(xí),力求在練習(xí)中加深理解,盡量改變課堂上教師包括辦代替的做法. 在安排本節(jié)課教學(xué)內(nèi)容時(shí),按認(rèn)識(shí)規(guī)律,由淺入深,由易及難,逐漸展開教學(xué)內(nèi)容,讓學(xué)生形成有序的知識(shí)結(jié)構(gòu). 作業(yè)答案: 思考題: .因?yàn)椋剩猿闪ⅲ?/p> 研究性題:令,則: ,故原不等式等價(jià)于 由已知有.。所以上式等價(jià)于,即。所以又等價(jià)于.因?yàn)椋鲜匠闪ⅲ栽坏仁匠闪ⅰ?/p> 不等式的實(shí)際解釋 題目:不等式:是正數(shù),且,則。可以給出一個(gè)具有實(shí)際背景的解釋:在溶液里加溶質(zhì)則濃度增加,即個(gè)單位溶液中含有個(gè)單位的溶質(zhì),其濃度小于加入個(gè)單位溶質(zhì)后的溶液濃度,請(qǐng)你仿照此例,給出兩個(gè)不等式的解釋。 分析與解 1.先看問題中的不等式,建筑學(xué)規(guī)定,民用住宅的窗戶面積必須小于地板面積,但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,并且這個(gè)比值越大,住宅的采光條件越好。我們知道如果同時(shí)增加相等的窗戶面積和地板面積,那么住宅的條件變好。 設(shè)地板面積為平方米,窗戶面積為平方米,若窗戶面積和地板面積同時(shí)增加相等的平方米,住宅的采光條件變好了,即有 2.是正數(shù),不等式可以推出,我們可以用混合溶液來解釋:兩個(gè)不同濃度的溶液混合后,其濃度介于混合前兩溶液濃度之間。 3.電阻串并聯(lián)。電阻值為、的電阻,串聯(lián)電阻為,并聯(lián)電阻為,串聯(lián)電阻變大,并聯(lián)電阻變小,因此有不等式,即 說明許多數(shù)學(xué)結(jié)論是由實(shí)際問題抽象為數(shù)學(xué)問題后,通過數(shù)學(xué)的運(yùn)算演變得到的。反過來,把抽象的數(shù)學(xué)結(jié)論還原為實(shí)際解釋也是一種數(shù)學(xué)運(yùn)用,值得大家關(guān)注。 第二課時(shí) 教學(xué)目標(biāo) 1.進(jìn)一步熟練掌握比較法證明不等式; 2.了解作商比較法證明不等式; 3.提高學(xué)生解題時(shí)應(yīng)變能力. 教學(xué)重點(diǎn)比較法的應(yīng)用 教學(xué)難點(diǎn)常見解題技巧 教學(xué)方法啟發(fā)引導(dǎo)式 教學(xué)活動(dòng) (一)導(dǎo)入新課 (教師活動(dòng))教師打出字幕(復(fù)習(xí)提問),請(qǐng)三位同學(xué)回答問題,教師點(diǎn)評(píng). (學(xué)生活動(dòng))思考問題,回答. [字幕]1.比較法證明不等式的步驟是怎樣的? 2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么? 3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學(xué)了哪些常用的變形方法?對(duì)式子的變形還有其它方法嗎? [點(diǎn)評(píng)]用比較法證明不等式步驟中,關(guān)鍵是對(duì)差式的變形.在我們所學(xué)的知識(shí)中,對(duì)式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學(xué)習(xí)比較法證明不等式,積累對(duì)差式變形的常用方法和比較法思想的應(yīng)用.(板書課題) 設(shè)計(jì)意圖:復(fù)習(xí)鞏固已學(xué)知識(shí),銜接新知識(shí),引入本節(jié)課學(xué)習(xí)的內(nèi)容. (二)新課講授 【嘗試探索,建立新知】 (教師活動(dòng))提出問題,引導(dǎo)學(xué)生研究解決問題,并點(diǎn)評(píng). (學(xué)生活動(dòng))嘗試解決問題. [問題] 1.化簡(jiǎn) 2.比較與()的大小. (學(xué)生解答問題) [點(diǎn)評(píng)] ①問題1,我們采用了因式分解的方法進(jìn)行簡(jiǎn)化. ②通過學(xué)習(xí)比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來比較兩個(gè)式子的大小. 設(shè)計(jì)意圖:?jiǎn)l(fā)學(xué)生研究問題,建立新知,形成新的知識(shí)體系. 【例題示范,學(xué)會(huì)應(yīng)用】 (教師活動(dòng))教師打出字幕(例題),引導(dǎo)、啟發(fā)學(xué)生研究問題,井點(diǎn)評(píng)解題過程. (學(xué)生活動(dòng))分析,研究問題. [字幕]例題3已知a,b是正數(shù),且,求證 [分析]依題目特點(diǎn),作差后重新組項(xiàng),采用因式分解來變形. 證明:(見課本) [點(diǎn)評(píng)]因式分解也是對(duì)差式變形的一種常用方法.此例將差式變形為幾個(gè)因式的積的形式,在確定符號(hào)中,表達(dá)過程較復(fù)雜,如何書寫證明過程,例3給出了一個(gè)好的示范. [字幕]例4試問:與()的大小關(guān)系.并說明理由. [分析]作差通分,對(duì)分子、分母因式分解,然后分類討論確定符號(hào). 解: 因?yàn)椋裕簦瑒t所以. 即 若,則所以. 即 若,則所以. 即 綜上所述:時(shí),時(shí),時(shí), [點(diǎn)評(píng)]解這道題在判斷符號(hào)時(shí)用了分類討論,分類討論是重要的數(shù)學(xué)思想方法.要理解為什么分類,怎樣分類.分類時(shí)要不重不漏. [字幕]例5甲、乙兩人同時(shí)同地沿同一條路線走到同一地點(diǎn).甲有一半時(shí)間以速度m行走,另一半時(shí)間以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,問甲、乙兩人誰先到達(dá)指定地點(diǎn). [分析]設(shè)從出發(fā)地點(diǎn)至指定地點(diǎn)的路程為,甲、乙兩人走完這段路程用的時(shí)間分別為,要回答題目中的問題,只要比較、的大小就可以了. 解:(見課本) [點(diǎn)評(píng)]此題是一個(gè)實(shí)際問題,學(xué)習(xí)了如何利用比較法證明不等式的思想方法解決有關(guān)實(shí)際問題.要培養(yǎng)自己學(xué)數(shù)學(xué),用數(shù)學(xué)的良好品質(zhì). 設(shè)計(jì)意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號(hào)的方法.培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力. 【課堂練習(xí)】 (教師活動(dòng))教師打出字幕(練習(xí)),要求學(xué)生獨(dú)立思考,完成練習(xí);請(qǐng)甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對(duì)正確的給予肯定,對(duì)偏差及時(shí)糾正;點(diǎn)評(píng)練習(xí)中存在的問題. (學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演. [字幕]練習(xí):1.設(shè),比較與的大小. 2.已知,求證 設(shè)計(jì)意圖:掌握比較法證明不等式及思想方法的應(yīng)用.靈活掌握因式分解法對(duì)差式的變形和分類討論確定符號(hào).反饋信息,調(diào)節(jié)課堂教學(xué). 【分析歸納、小結(jié)解法】 (教師活動(dòng))分析歸納例題的解題過程,小結(jié)對(duì)差式變形、確定符號(hào)的常用方法和利用不等式解決實(shí)際問題的解題步驟. (學(xué)生活動(dòng))與教師一道小結(jié),并記錄在筆記本上. 1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個(gè)式子大小的一種重要方法. 2.對(duì)差式變形的常用方法有:配方法,通分法,因式分解法等. 3.會(huì)用分類討論的方法確定差式的符號(hào). 4.利用不等式解決實(shí)際問題的解題步驟:①類比列方程解應(yīng)用題的步驟.②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數(shù)關(guān)系、等式或不等式,④求解,作答. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的知識(shí)體系. (三)小結(jié) (教師活動(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí)及數(shù)學(xué)思想與方法. (學(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記. 本節(jié)課學(xué)習(xí)了對(duì)差式變形的一種常用方法——因式分解法;對(duì)符號(hào)確定的分類討論法;應(yīng)用比較法的思想解決實(shí)際問題. 通過學(xué)習(xí)比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問題簡(jiǎn)化是比較法證明不等式中所蘊(yùn)含的重要數(shù)學(xué)思想,掌握求差后對(duì)差式變形以及判斷符號(hào)的重要方法,并在以后的學(xué)習(xí)中繼續(xù)積累方法,培養(yǎng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)的知識(shí),領(lǐng)會(huì)化歸、類比、分類討論的重要數(shù)學(xué)思想方法. (四)布置作業(yè) 1.課本作業(yè):P177、8。 2,思考題:已知,求證 3.研究性題:對(duì)于同樣的距離,船在流水中來回行駛一次的時(shí)間和船在靜水中來回行駛一次的時(shí)間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變) 設(shè)計(jì)意圖:思考題讓學(xué)生了解商值比較法,掌握分類討論的思想.研究性題是使學(xué)生理論聯(lián)系實(shí)際,用數(shù)學(xué)解決實(shí)際問題,提高應(yīng)用數(shù)學(xué)的能力. (五)課后點(diǎn)評(píng) 1.教學(xué)評(píng)價(jià)、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,解決問題,反饋學(xué)習(xí)信息,調(diào)節(jié)教學(xué)活動(dòng). 2.教學(xué)措施的設(shè)計(jì):由于對(duì)差式變形,確定符號(hào)是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學(xué)習(xí)差式變形的方法和符號(hào)的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類討論確定符號(hào),例5使學(xué)生對(duì)所學(xué)的知識(shí)會(huì)應(yīng)用.例題設(shè)計(jì)目的在于突出重點(diǎn),突破難點(diǎn),學(xué)會(huì)應(yīng)用. 作業(yè)答案 思考題:證明: 因?yàn)椋援?dāng)時(shí),故 又因?yàn)椋?/p> 當(dāng)時(shí),故,即,所以 當(dāng)時(shí),.故,即,所以 綜上所述,研究性題:設(shè)兩地距離為,船在靜水中的速度為,水流速度為(),則 所以船在流水中來回行駛一次的時(shí)間比在靜水中來回行駛一次的時(shí)間長(zhǎng). 第三課時(shí) 教學(xué)目標(biāo) 1.掌握綜合法證明不等式; 2.熟練掌握已學(xué)的重要不等式; 3.增強(qiáng)學(xué)生的邏輯推理能力. 教學(xué)重點(diǎn)綜合法 教學(xué)難點(diǎn)不等式性質(zhì)的綜合運(yùn)用 教學(xué)方法啟發(fā)引導(dǎo)式 教學(xué)活動(dòng) (-)導(dǎo)入新課 (教師活動(dòng))打出字幕(課前練習(xí)),引導(dǎo)學(xué)生回憶所學(xué)的知識(shí),盡量用多種方法完成練習(xí),投影學(xué)生不同解法,并點(diǎn)評(píng). (學(xué)生活動(dòng))完成練習(xí). [字幕] 1.證明(). 2.比較與的大小,并證明你的結(jié)論. 1.證法一:由,所以 方法二:由,知,即,所以 2.答: 證法一:由,所以 證法二:由知,所以 [點(diǎn)評(píng)]兩道題的證法一都是用的比較法,證法二我們?cè)?.1節(jié)和6.2節(jié)已學(xué)過,這種方法是綜合法,是本節(jié)課學(xué)習(xí)的內(nèi)容.(板書課題) 設(shè)計(jì)意圖:通過練習(xí),復(fù)習(xí)比較法證明不等式,導(dǎo)入新課:綜合法證明不等式.提出學(xué)習(xí)任務(wù). (二)新課講授 【嘗試探索,建立新知】 (教師活動(dòng))教師提出問題:用上述方法二證明,并點(diǎn)評(píng)證法的數(shù)學(xué)原理,(學(xué)生活動(dòng))學(xué)生研究證明不等式. [問題]證明 (證明:因?yàn)椋裕矗?/p> [點(diǎn)評(píng)] ①利用某些已知證明過的不等式(例如平均值定理)和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,這種證明方法通常叫做綜合法. ②綜合法證題方法:由已知推出結(jié)論.這里已知可以是已知的重要不等式,也可以是已知的不等式性質(zhì). 設(shè)計(jì)意圖:探索解決問題的新方法,建立新知識(shí),構(gòu)建用綜合法證明不等式的方法原理. 【例題示范、學(xué)會(huì)應(yīng)用】 (教師活動(dòng))教師板書例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)用綜合法證明不等式,并點(diǎn)評(píng)用綜合法證明不等式必須注意的問題. (學(xué)生活動(dòng))學(xué)生在教師誘導(dǎo)下,研究問題,與教師一道完成問題的論證. 例1已知,求證 [分析]由于不等式左邊是和的形式,右邊為常數(shù),可用平均值定理作為已知不等式推證. 證明:因?yàn)椋瑒t,所以.故 [點(diǎn)評(píng)]此題的證明方法是綜合法,在證明過程中,把平均值定理作為已知不等式,而平均值定理是有條件限制的,所以要用重要不等式作為已知不等式,注意要證的不等式必須符合重要不等式的條件和結(jié)構(gòu)特征. 例2已知a,b,c是不全相等的正數(shù),求證 [分析]由不等式右邊為6abc是積的形式,左邊是和的形式,可知由出發(fā)可證. 證明一(見課本) 證明二: 因?yàn)閍,b,c是不全相等的正數(shù).所以,且三式不能全取“=”號(hào). 所以 即 [點(diǎn)評(píng)] ①綜合法的思維特點(diǎn)是:由已知推出結(jié)論.用綜合法證明不等式中常用的重要不等式有: ;();();(a,b同號(hào)),()。 ②此例中條件a,b,c是不全相等的正數(shù),所以最后所證不等式取不到等號(hào). ③由于作為綜合法證明依據(jù)的不等式本身是可以根據(jù)不等式的意義、性質(zhì)或比較法證出 的,所以用綜合法可以獲證的不等式往往可以直接根據(jù)不等式的意義、性質(zhì)或比較法來證明. 我們?cè)谧C明不等式時(shí),選擇方法要適當(dāng),不要對(duì)某種方法抱定不放,要善于觀察,根據(jù)題目的特征選擇證題方法. 設(shè)計(jì)意圖:鞏固用綜合法證明不等式的知識(shí),掌握用綜合法證明不等式中,常用的重要不等式,理解綜合法證明不等式與比較法證明不等式的內(nèi)在聯(lián)系. 【課堂練習(xí)】 (教師活動(dòng))打出字幕(練習(xí)),請(qǐng)甲、乙兩位同學(xué)板演,巡視學(xué)生的解題情況,對(duì)正確的證法給予肯定,對(duì)偏差及時(shí)糾正,點(diǎn)評(píng)練習(xí)中存在的問題. (學(xué)生活動(dòng))在筆記本上完成練習(xí).甲、乙兩位同學(xué)板演. [字幕]練習(xí)1已知,求證 2.已知,求證 設(shè)計(jì)意圖:掌握用綜合法證明不等式,并會(huì)靈活運(yùn)用重要不等式作為證明中的已知不等式.反饋課堂效果,調(diào)節(jié)課堂教學(xué). 【分析歸納,小結(jié)解法】 (教師活動(dòng))分析歸納例題和練習(xí)的解題過程.小結(jié)用綜合法證明不等式的解題方法. (學(xué)生活動(dòng))與教師一道分析歸納,小結(jié)解題方法,并記錄在筆記本上. 1.綜合法是證明不等式的基本方法.用綜合法證明不等式的邏輯關(guān)系是:…(A為已經(jīng)證明過的.不等式,B為要證的不等式).即綜合法是“由因?qū)Ч保?/p> 2.運(yùn)用不等式的性質(zhì)和已證明過的木等式時(shí),要注意它們各自成立的條件,這樣才能使推理正確,結(jié)論無誤. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握綜合法證明不等式的方法. (三)小結(jié) (教師活動(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí). (學(xué)生活動(dòng))與教師一道小結(jié),并記錄在筆記本上. 本節(jié)課學(xué)習(xí)了用綜合法證明不等式,用綜合法證明不等式的依據(jù)是:l。已知條件和不等式性質(zhì);2.基本不等式.能用綜合法證明的不等式一般可用比較法證明,用綜合法證明不等式的依據(jù)是基本不等式時(shí),要注意定理的使用條件和定理中“=”號(hào)成立的條件. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí). (四)布置作業(yè) 1.課本作業(yè):P175.6. 2.思考題:若,求證 3.研究性題:某市用37輛汽車往災(zāi)區(qū)運(yùn)送一批救災(zāi)物資,假設(shè)以千米/小時(shí)的速度直達(dá)災(zāi)區(qū).已知某市到災(zāi)區(qū)的公路線長(zhǎng)400干米,為安全需要,兩汽車間距不得小于千米. 那么,這批物資全部到達(dá)災(zāi)區(qū)的最短時(shí)間是多少? 設(shè)計(jì)意圖:課本作業(yè)鞏固基礎(chǔ)知識(shí),思考題供學(xué)有余力的同學(xué)完成.研究性題培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力. (五)課后點(diǎn)評(píng) 1.在導(dǎo)入新課時(shí)設(shè)計(jì)了兩個(gè)練習(xí)題,尤其是稍放開一點(diǎn)的第2題,如果學(xué)生能自覺不自覺地用已學(xué)過的很常用而沒正式講過的綜合法的思考方法解題,綜合法的引入就會(huì)很自然,即使學(xué)生沒有想到,教師引導(dǎo)起來也并不困難.因而順著學(xué)生的思路,幫助學(xué)生形成用綜合法證明不等式的知識(shí)結(jié)構(gòu). 2.例1與例2的學(xué)習(xí)使學(xué)生理解掌握綜合法證明不等式的原理,發(fā)現(xiàn)綜合法與比較法的內(nèi)在聯(lián)系.在教學(xué)設(shè)計(jì)上,力圖從學(xué)生的需要出發(fā)設(shè)計(jì)問題,幫助學(xué)生抓住知識(shí)的內(nèi)在聯(lián)系,使學(xué)到的方法能用、會(huì)用. 作業(yè)答案 思考題:證明:因?yàn)椋忠驗(yàn)椋裕恚粚⑸鲜鋈齻(gè)不等式相加得 所以 研究性題:設(shè)最后一輛車到達(dá)時(shí)用的時(shí)間為小時(shí),則 所以最短時(shí)間為12小時(shí). ———===分頁標(biāo)題===——— 教學(xué)目標(biāo) 1.理解不等式的性質(zhì),掌握不等式各個(gè)性質(zhì)的條件和結(jié)論之間的邏輯關(guān)系,并掌握它們的證明方法以及功能、運(yùn)用; 2.掌握兩個(gè)實(shí)數(shù)比較大小的一般方法; 3.通過不等式性質(zhì)證明的學(xué)習(xí),提高學(xué)生邏輯推論的能力; 4.提高本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生條理思維的習(xí)慣和認(rèn)真嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度; 教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) 本節(jié)首先通過數(shù)形結(jié)合,給出了比較實(shí)數(shù)大小的方法,在這個(gè)基礎(chǔ)上,給出了不等式的性質(zhì),一共講了五個(gè)定理和三個(gè)推論,并給出了嚴(yán)格的證明。 (2)重點(diǎn)、難點(diǎn)分析 在“不等式的性質(zhì)”一節(jié)中,聯(lián)系了實(shí)數(shù)和數(shù)軸的對(duì)應(yīng)關(guān)系、比較實(shí)數(shù)大小的方法,復(fù)習(xí)了初中學(xué)過的不等式的基本性質(zhì)。 不等式的性質(zhì)是穿越本章內(nèi)容的一條主線,無論是算術(shù)平均數(shù)與幾何平均數(shù)的定理的證明及其應(yīng)用,不等式的證明和解一些簡(jiǎn)單的不等式,無不以不等式的性質(zhì)作為基礎(chǔ)。 本節(jié)的重點(diǎn)是比較兩個(gè)實(shí)數(shù)的大小,不等式的五個(gè)定理和三個(gè)推論;難點(diǎn)是不等式的性質(zhì)成立的條件及其它的應(yīng)用。 ①比較實(shí)數(shù)的大小 教材運(yùn)用數(shù)形結(jié)合的觀點(diǎn),從實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)出發(fā), 與初中學(xué)過的知識(shí)“在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大”利用數(shù)軸可以比較數(shù)的大小。 指出比較兩實(shí)數(shù)大小的方法是求差比較法: 比較兩個(gè)實(shí)數(shù)a與b的大小,歸結(jié)為判斷它們的差a-b的符號(hào),而這又必然歸結(jié)到實(shí)數(shù)運(yùn)算的符號(hào)法則。 比較兩個(gè)代數(shù)式的大小,實(shí)際上是比較它們的值的大小,而這又歸結(jié)為判斷它們的差的'符號(hào)。 ②理清不等式的幾個(gè)性質(zhì)的關(guān)系 教材中的不等式共5個(gè)定理3個(gè)推論,是從證明過程安排順序的.從這幾個(gè)性質(zhì)的分類來說,可以分為三類: (Ⅰ)不等式的理論性質(zhì): (對(duì)稱性) (傳遞性) (Ⅱ)一個(gè)不等式的性質(zhì): (n∈N,n>1) (n∈N,n>1) (Ⅲ)兩個(gè)不等式的性質(zhì): 2.教法建議 本節(jié)課的核心是培養(yǎng)學(xué)生的變形技能,訓(xùn)練學(xué)生的推理能力.為今后證明不等式、解不等式的學(xué)習(xí)奠定技能上和理論上的基礎(chǔ). 授課方法可以采取講授與問答相結(jié)合的方式.通過問答形式不斷地給學(xué)生設(shè)置疑問(即:設(shè)疑);對(duì)教學(xué)難點(diǎn),再由講授形式解決疑問.(即:解疑).主要思路是:教師設(shè)疑→學(xué)生討論→教師啟發(fā)→解疑. 教學(xué)過程可分為:發(fā)現(xiàn)定理、定理證明、定理應(yīng)用,采用由形象思維到抽象思維的過渡,發(fā)現(xiàn)定理、證明定理.采用類比聯(lián)想,變形轉(zhuǎn)化,應(yīng)用定理或應(yīng)用定理的證明思路;解決一些較簡(jiǎn)單的證明題. 第一課時(shí) 教學(xué)目標(biāo) 1.掌握實(shí)數(shù)的運(yùn)算性質(zhì)與大小順序間關(guān)系; 2.掌握求差法比較兩實(shí)數(shù)或代數(shù)式大小; 3.強(qiáng)調(diào)數(shù)形結(jié)合思想。 教學(xué)重點(diǎn) 比較兩實(shí)數(shù)大小 教學(xué)難點(diǎn) 理解實(shí)數(shù)運(yùn)算的符號(hào)法則 教學(xué)方法 啟發(fā)式 教學(xué)過程 一、復(fù)習(xí)回顧 我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,在數(shù)軸上不同的兩點(diǎn)中,右邊的點(diǎn)表示的實(shí)數(shù)比左邊的點(diǎn)表示的實(shí)數(shù)大。例如,在右圖中,點(diǎn)A表示實(shí)數(shù),點(diǎn)B表示實(shí)數(shù),點(diǎn)A在點(diǎn)B右邊,那么。我們?cè)倏从覉D,表示減去所得的差是一個(gè)大于0的數(shù)即正數(shù)。一般地:若,則是正數(shù);逆命題也正確。類似地,若,則 是負(fù)數(shù);若 ,則 。它們的逆命題都正確。這就是說:(打出幻燈片1) 由此可見,要比較兩個(gè)實(shí)數(shù)的大小,只要考察它們的差就可以了,這也是我們這節(jié)課將要學(xué)習(xí)的主要內(nèi)容。 二、講授新課 1. 比較兩實(shí)數(shù)大小的方法——求差比較法 比較兩個(gè)實(shí)數(shù)與的大小,歸結(jié)為判斷它們的差的符號(hào),而這又必然歸結(jié)到實(shí)數(shù)運(yùn)算的符號(hào)法則。 比較兩個(gè)代數(shù)式的大小,實(shí)際上是比較它們的值的大小,而這又歸結(jié)為判斷它們的差的符號(hào)。 接下來,我們通過具體的例題來熟悉求差比較法。 2. 例題講解 例1 比較 與 的大小。 分析:此題屬于兩代數(shù)式比較大小,實(shí)際上是比較它們的值的大小,可以作差,然后展開,合并同類項(xiàng)之后,判斷差值正負(fù),并根據(jù)實(shí)數(shù)運(yùn)算的符號(hào)法則來得出兩個(gè)代數(shù)式的大小。 解: ∴ 例2 已知,比較( 與 的大小。 分析:此題與例1基本類似,也屬于兩個(gè)代數(shù)式比較大小,但是其中的x有一定的限制,應(yīng)該在對(duì)差值正負(fù)判斷時(shí)引起注意,對(duì)于限制條件的應(yīng)用經(jīng)常被學(xué)生所忽略。 由 得 ,從而請(qǐng)同學(xué)們想一想,在例2中,如果沒有 這個(gè)條件,那么比較的結(jié)果如何? (學(xué)生回答:若沒有 這一條件,則 ,從而 大于或等于 ) 為了使大家進(jìn)一步掌握求差比較法,我們來進(jìn)行下面的練習(xí)。 三、課堂練習(xí) 1.比較 的大小。 2.如果 ,比較 的大小。 3.已知,比較 與 的大小。 要求:學(xué)生板演練習(xí),老師講評(píng),并強(qiáng)調(diào)學(xué)生注意加限制條件的題目。 課堂小結(jié) 通過本節(jié)學(xué)習(xí),大家要明確實(shí)數(shù)運(yùn)算的符號(hào)法則, 掌握求差比較法來比較兩實(shí)數(shù)或代數(shù)式的大小。 課后作業(yè) 習(xí)題6,1 1,2,3。 探究活動(dòng) 能得到什么結(jié)論 題目已知且,你能夠推出什么結(jié)論? 分析與解:由條件推出結(jié)論,我們可以考慮把已知條件的變量范圍擴(kuò)大,對(duì)已知變量作運(yùn)算,運(yùn)用不等式的性質(zhì),或者跳出不等式去考慮一般的數(shù)學(xué)表達(dá)式。 思路一:改變的范圍,可得: 1.且; 2.且; 思路二:由已知變量作運(yùn)算,可得: 3.且; 4.且; 5.且; 6.且; 7.且; 思路三:考慮含有的數(shù)學(xué)表達(dá)式具有的性質(zhì),可得: 8.(其中為實(shí)常數(shù))是三次方程; 9.(其中為常數(shù))的圖象不可能表示直線。 說明從已知信息能夠推出什么結(jié)論?這是我們經(jīng)常需要思考的問題,這里給出的都是必要非充分條件,讀者可以考慮是否能夠?qū)懗龀湟獥l件;另外,運(yùn)用推出關(guān)系的傳遞性,在推出結(jié)論的基礎(chǔ)上進(jìn)一步進(jìn)行推理,還可得出很多結(jié)果,請(qǐng)讀者考慮. 探究關(guān)系式是否成立的問題 題目當(dāng)成立時(shí),關(guān)系式是否成立?若成立,加以證明;若不成立,說明理由。 解:因?yàn)椋裕裕裕曰?/p> 所以或 所以或 所以不可能成立。 說明:像本例這樣的探索題,題目的結(jié)論是“兩可”(即兩種可能性)情形,而我們知道,說明結(jié)論不成立可像例1那樣舉一個(gè)反例就可以了。不過像本例的執(zhí)果索因的`分析,不僅說明結(jié)論不成立,而且得出,必須同時(shí)大于1或同時(shí)小于1的結(jié)論。 探討增加什么條件使命題成立 例適當(dāng)增加條件,使下列命題各命題成立: (1)若,則; (2)若,則; (3)若,則; (4)若,則 思路分析:本例為條件型開放題,需要依據(jù)不等式的性質(zhì),尋找使結(jié)論成立時(shí)所缺少的一個(gè)條件。 引申發(fā)散對(duì)命題(3),能否增加條件,或,使其成立?請(qǐng)闡述你的理由。 教學(xué)過程(師生活動(dòng)): 提出問題: 某地慶典活動(dòng)需燃放某種禮花彈.為確保人身安全,要求燃放者在點(diǎn)燃導(dǎo)火索后于燃放前轉(zhuǎn)移到10米以外的地方.已知導(dǎo)火索的燃燒速度為0.02m/s,人離開的速度是4m/s,導(dǎo)火索的長(zhǎng)x(m)應(yīng)滿足怎樣的關(guān)系式? 你會(huì)運(yùn)用已學(xué)知識(shí)解這個(gè)不等式嗎?請(qǐng)你說說解這個(gè)不等式的過程. 探究新知: 1、在學(xué)生充分發(fā)表意見的基礎(chǔ)上,師生共同歸納出這個(gè)不等式的解法.教師規(guī)范地板書解的過程. 2、例題. 解下列不等式,并在數(shù)軸上表示解集: (1)x≤50(2)-4x3 (3)7-3x≤10(4)2x-33x+1 分組活動(dòng).先獨(dú)立思考,然后請(qǐng)4名學(xué)生上來板演,其余同學(xué)組內(nèi)相互交流,作出記錄,最后各組選派代表發(fā)言,點(diǎn)評(píng)板演情況.教師作總結(jié)講評(píng)并示范解題格式. 3、教師提問:從以上的求解過程中,你比較出它與解方程有什么異同? 讓學(xué)生展開充分討論,體會(huì)不等式和方程的內(nèi)在聯(lián)系與不同之處. 鞏固新知: 1、解下列不等式,并在數(shù)軸上表示解集: (1)(2)-8x10 2、用不等式表示下列語句并寫出解集: (1)x的3倍大于或等于1; (2)y的的差不大于-2. 解決問題: 測(cè)量一棵樹的樹圍(樹干的周長(zhǎng))可以計(jì)算它的'樹齡一般規(guī)定以樹干離地面1.5m的地方作為測(cè)量部位.某樹栽種時(shí)的樹圍為5cm,以后樹圍每年增加約3cm.這棵樹至少生一長(zhǎng)多少年,其樹圍才能超過2.4m? 總結(jié)歸納: 圍繞以下幾個(gè)問題: 1、這節(jié)課的主要內(nèi)容是什么? 2、通過學(xué)習(xí),我取得了哪些收獲? 3、還有哪些問題需要注意? 讓學(xué)生自己歸納,教師僅做必要的補(bǔ)充和點(diǎn)撥? 【不等式的性質(zhì)教案】相關(guān)文章: 高中數(shù)學(xué) 不等式的性質(zhì)一 教案12-28 《小數(shù)的性質(zhì)》教案02-20 減法的運(yùn)算性質(zhì)教案11-02 菱形的性質(zhì)教學(xué)教案10-08 小數(shù)的性質(zhì)的課程教案10-09 雙曲線的幾何性質(zhì)教案11-15 對(duì)數(shù)的運(yùn)算性質(zhì)教學(xué)教案10-08 不等式及其解集精選教學(xué)教案10-08不等式的性質(zhì)教案2
不等式的性質(zhì)教案3
不等式的性質(zhì)教案4
不等式的性質(zhì)教案5
不等式的性質(zhì)教案6
不等式的性質(zhì)教案7
不等式的性質(zhì)教案8
不等式的性質(zhì)教案9
不等式的性質(zhì)教案10
不等式的性質(zhì)教案11