數據挖掘在電子商務的應用論文
摘要:數據挖掘就是對潛在的數據及數據關聯進行探索和發現。隨著信息技術的不斷發展,這一技術在電子商務領域逐漸得到普遍應用。基于此,本文就數據挖掘在電子商務中的應用進行研究,首先就數據挖掘中的路徑分析技術、關聯分析技術、聚類分析技術和分類分析技術進行簡要介紹,然后分析數據挖掘在電子商務中的實際應用,從而提高數據挖掘技術的應用水平,增強電子商務的發展實力。
關鍵詞:數據挖掘;電子商務;潛在客戶
一、數據挖掘在電子商務中的技術應用
就現階段電子商務對數據挖掘技術的應用現狀來看,主要應用到的技術包括以下幾方面內容,分別是路徑分析技術、關聯分析技術、聚類分析技術和分類分析技術。就路徑分析技術來看,主要對客戶互聯網訪問路徑的頻繁性進行分析,通過大數據采集和處理,了解客戶對各種網絡頁面的喜好程度和特點,從而對自身的設計進行針對性的改進,為客戶提供更加人性化的服務;就關聯分析技術來看,主要指的是對隱藏數據之間的關聯進行分析,并且通過分析掌握其相互關聯的規律,并根據這一規律對網絡站點的結構進行相應的改進,使電子商務中存在相關性的商品能夠一起被搜索出來,既為客戶提供便利,同時提高交叉銷售的幾率;聚類分析技術指的是根據數據的信息,按照一定的原則對數據進行分類。就分類分析技術而言,主要通過分析數據掌握分類規則,然后按照這一規則對數據進行分類。
二、數據挖掘在電子商務中的實際應用
1.對潛在客戶進行挖掘在電子商務中應用數據挖掘技術能夠對潛在客戶進行挖掘。例如商家可以對網站的日志記錄進行分析,探究該記錄中存在的規律,從而按照這一規律對網站的訪問客戶進行相應分類。在分類過程中,商家應該對客戶屬性和相關關系進行確定,對新客戶與老客戶之間存在重疊的屬性進行識別,從而實現對訪問網站新用戶快速分類,在分類完畢后,商家可以通過分析新客戶的屬性特點,從而對新客戶進行潛在性判斷,如果判斷新客戶可以被作為商家的潛在客戶,就可以為該客戶提供個性化的頁面服務,從而將新客戶發展成為老客戶。2.對駐留時間進行延長對于電子商務而言,商家必須提高客戶在商品頁面的駐留時間,并且使客戶的購買興趣和欲望得到激發。電子商務與傳統商務最大的不同在于銷售商具有虛擬性的特點,因此客戶在購物選擇時,對銷售商的印象是沒有差異的。銷售商在不斷提升自身服務水平的同時,應該對客戶的瀏覽行為和特點進行分析,從而對客戶的興趣和需求進行進一步的了解,以此為依據調整自身的商品頁面,用符合客戶需求的廣告和商品文案吸引客戶的駐留時間,從而提高交易的幾率。3.對網絡站點進行優化電子商務主要依托于網站,因此網站優化也是提高電子商務發展水平的有效措施。利用數據挖掘技術對網絡站點進行優化主要由兩方面構成,一方面是對存在相關性的網頁進行鏈接設計。例如對用戶瀏覽頁面的幾率和特點進行分析,然后找出存在相關性的頁面,增加網頁鏈接這一功能,使客戶的搜索更加便捷;另一方面是對客戶的期望位置進行探索,例如對用戶頻率較高的訪問位置進行分析,從而將頻率較高的位置設置為客戶的期望位置,并且在實際位置與期望位置間建立鏈接。另外,可以對用戶的網頁瀏覽習慣和信息喜好進行分析,強化用戶在網頁中的自助服務,例如將網頁信息參照超市模式進行擺放,根據相關性分類,使用戶能夠通過自主瀏覽選擇到心儀的產品,從而提高交易的幾率。4.對營銷手段進行改進在電子商務的實際運營過程中,很多客戶都會在購買一種物品時同時選擇具有相關性的其他物品,因此銷售商應該對銷售方式進行改進,利用數據挖掘技術實現交叉銷售,從而提高營銷水平。在應用交叉銷售這一手段時,主要應該利用數據挖掘技術,對客戶的喜好進行分析,從而提供具有針對性的商品。
參考文獻:
[1]姜寧,牛永潔.Web數據挖掘在電子商務中的應用——以淘寶網為例[J].計算機時代,2016(7):49-52.
[2]王紅玉.數據挖掘在電子商務中的應用[J].電腦編程技巧與維護,2016(3):49-51.
【數據挖掘在電子商務的應用論文】相關文章:
淺談數據挖掘在電子商務中的應用經濟論文10-10
復雜網絡數據挖掘論文11-15
大數據在旅游管理的應用論文10-12
Hadoop物聯網數據挖掘的算法分析論文10-10
電子商務應用論文11-02
旅游管理下數據挖掘運用論文(精選11篇)09-22
數據挖掘實習報告10-11
分析電子商務中的數據安全論文04-26
PKI在電子商務中的應用論文10-13
微課在電子商務教學中的應用論文10-12